summary lineonline®

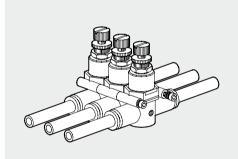
		PNEUMAI	1 C
	INTRODUCTION LINE-ON-LINE	PAGE	4-4
100	IN-LINE SOLENOID VALVES SERIES SOV L	PAGE	4-6
	MINIATURE REDUCER/ECONOMIZER, SERIES RML	PAGE	4-8
	IN-LINE PRESSURE GAUGE SERIES MAN L	PAGE 4	I-10
	IN-LINE PRESSURE INDICATOR SERIES LAM L	PAGE 4	I-12
	IN-LINE SHUTOFF VALVES SERIES V2V L - V3V L	PAGE 4	1-14
	IN-LINE FLOW MICRO REGULATOR SERIES RFL L	PAGE 4	I-16
	IN-LINE QUICK-EXHAUST VALVES SERIES VSR L	PAGE 4	I-18
	IN-LINE CHECK VALVE SERIES VNR L	PAGE 4	1-20
	LINE ON LINE® ACCESSORIES	PAGE 4	1-22
			_

lineonline LINE OF PRODUCTS ON LINE

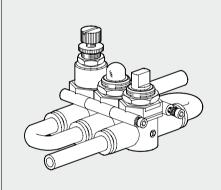
Line on Line is an exclusive range of products for mounting on pneumatic circuits. With these small, highly efficient components it is possible to perform all pneumatic functions at any point of the circuit.

Line on Line is ultra-modular - the components can be connected in parallel, in series or combined parallel/series.

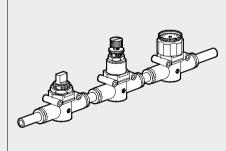
All Line on Line products are available for pipe-pipe connection with two push in fittings. Adding an RU6 fitting, it is possible to have a pipe-NPT thread connection.


The body is made of technopolymer, giving a product that is extremely lightweight and compact.

One side of the body is marked with an indelible pneumatic symbol to facilitate identification and indicate the direction of flow.



CONNECTION FREE

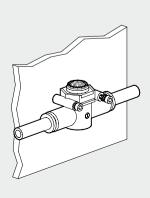
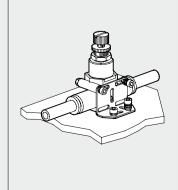
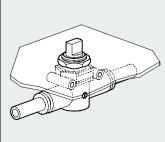

PARALLEL LINES

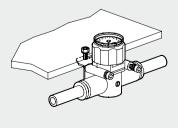
SERIAL LINE PARALLEL FITTING

SERIAL LINE IN-LINE FITTING

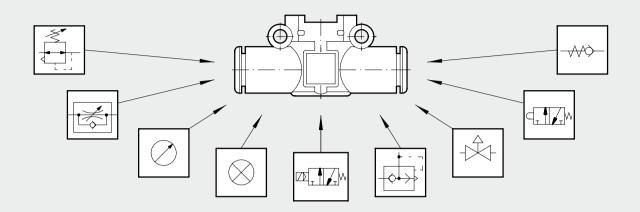
FIXING FREE

WALL FIXING

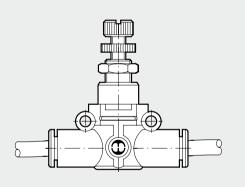




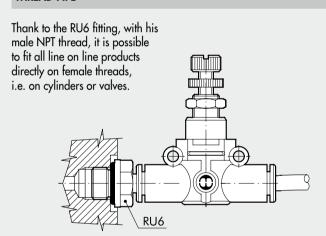

PLATE FIXING

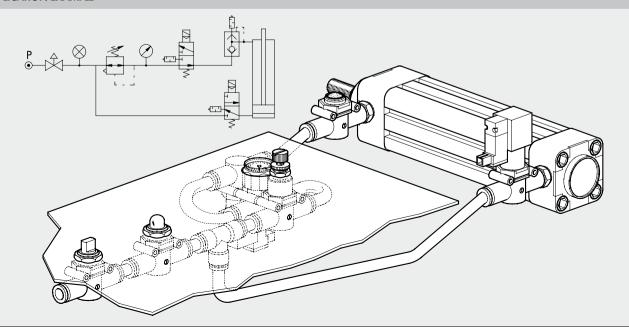
PANEL FIXING



UNDER WALL FIXING



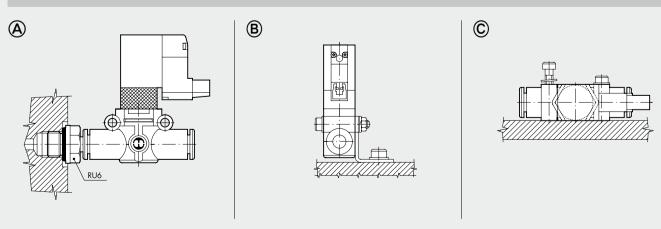

ALL THE PNEUMATIC FUNCTIONS WITH THE SAME EXTERNAL DIMENSIONS


PIPE-PIPE

THREAD-PIPE

APPLICATION EXAMPLE

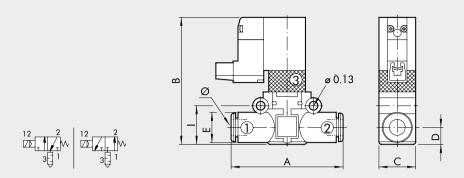
IN-LINE SOLENOID VALVE SERIES SOV L


SOV L solenoid valves belong to the LINE ON LINE® family, which means they can be connected to all the other components in series or in parallel. Available in the version for pipe-pipe connection with two push-in fittings. Though small in size, SOV L valves are solenoid-piloted and feature very high performance. The spool distributor is fitted with special polyurethane gaskets to ensure a very long working life.

Each valve comes complete with a monostable manual control and LED. Exhaust can be damped with an annular silencer.

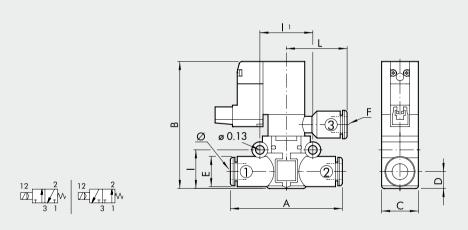
TECHNICAL DATA		Ø 1/4	Ø 5/16				
Operating pressure	MPa	0.25	- 0.7				
	bar	2.5	- 7				
	psi						
Temperature range	°C						
	°F	.					
Flow rate at 6.3 bar (0.63 MPa - 91 psi) ΔP 0.5 bar (0.1 Mpa - 7.25 psi)	NI/min	270	500				
	scfm	9.5	17.7				
Flow rate at 6.3 bar (0.63 MPa - 91 psi) ΔP 1 bar (0.1 Mpa - 14.5 psi)	NI/min	380	700				
	scfm	13.4	24.7				
Conductance C	NI/min·bar	95.8	178.1				
Coefficient b	bar/bar	0.145	0.129				
Voltage	VDC	2	4				
Power	W	0.					
Recommended pipe		Rilsan PA11 - Nylon 6 - Pol					
Fluid		Lubricated or unlubricate	d filtered compressed air				

ASSEMBLY OPTIONS



How to mount the SOV L:

- Fig. (a) Adding a RU6 fitting, with his male NPT thread, it is possible to mount the SOV L straight on to the actuator or the control valve.
- Fig. ® Fixing to the plate with the special SQU L bracket.
- Fig. © There are two robust rings on the plastic body for fixing the SOV L straight onto the wall.



SOV L 3/2 NC-NO PIPE-PIPE SILENCED EXHAUST

Code	Ref.	Ø	Α	В	С	D	E	ı	11
9069016U	SOV L 3/2 NC 1/4-1/4	1/4	1.95	2.26	0.58	0.25	0.45	0.57	0.79
9069116U	SOV L 3/2 NO 1/4-1/4								
9069024	SOV L 3/2 NC 5/16-5/16	5/16	2.26	2.5	0.74	0.36	0.54	0.74	0.94
9069124	SOV L 3/2 NO 5/16-5/16								

SOV L 3/2 NC-NO PIPE-PIPE CONVEYED EXHAUST

Code	Ref.	Ø	Α	В	С	D	E	F	1	11	L
9069216U	SOV L 3/2 NC 1/4-1/4-1/4	1/4	1.95	2.26	0.58	0.25	0.45	Ø 1/4	0.57	0.79	1.11
9069316U	SOV L 3/2 NO 1/4-1/4-1/4										
9069224	SOV L 3/2 NC 5/16-5/16-5/16	5/16	2.26	2.5	0.74	0.36	0.54	Ø 5/16	0.74	0.94	1.18
9069324	SOV L 3/2 NO 5/16-5/16-5/16										

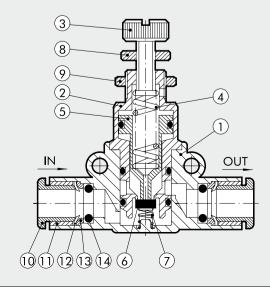
ACCESSORIES

SPARES

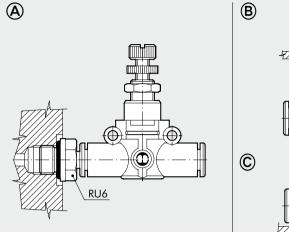
PLUG-IN CONNECTOR

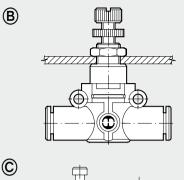
Code	Description
W0970512000	Plug-in connector
	Mach 11 L = 11.8 inch

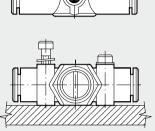
MINIATURE REDUCER/ECONOMIZER, **SERIES RML**

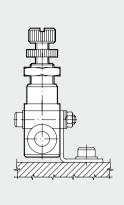

The RML R miniature pressure regulator belongs to the LINE ON LINE® family and can be connected in series or in parallel with all the other products. The miniature pressure regulator is available in five different types:

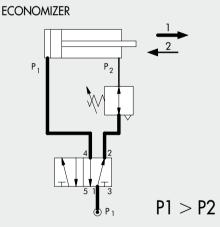
- In-line with push-in input and output fitting
- In-line with threaded input port and push-in output fitting
- In-line with push-in input fitting and threaded output port
- At an angle with threaded input port and push-in output fitting
 Cartridge type for direct assembly in suitably worked slot. The miniature pressure regulator is fitted with a relief valve for over-pressure exhaust.
- Particularly suitable for use between the valve and actuator and as a pressure regulator in secondary branches of the pneumatic system.




TECHNICAL DATA		RML Ø 1/4	RML Ø 5/16				
Regulation range		1 to 8 bar - 0.1 to 0.8	MPa - 14.5 to 116 psi				
Inlet pressure	MPa						
	bar	2 - 10					
	psi	29 -	145				
Flow rate at 6.3 bar (0.63 MPa - 91 psi) ΔP 1 bar (0.1 MPa - 14.5 psi)	NI/min	150	260				
	scfm	5.3	9.2				
Flow rate on exhaust at 6.3 bar (0.63 MPa - 91 psi)	NI/min	400	600				
	scfm	14	21.2				
Fluid		Lubricated or unlub	oricated filtered air				
Max. temperature at 1 MPa; 10 bar; 145 psi	°C	- 20 to + 60					
	°F	- 4 to	+ 140				
Assembly position		Available					
Notes		In the miniature regulator the pres	sure must always be set upwards.				


- (1) Technopolymer body
- Nickel-plated brass insert
- Nickel-plated brass adjusting screw
- 4 Steel adjusting spring
- (5) Brass piston rod
- 6 NBR shutter
- 7 Stainless steel shutter spring
- Adjusting screw ring nut
- Nickel-plated brass wall ring nut
- 10 Technopolymer release bushing
- 1 Technopolymer stop bushing
- Stainless steel crimping spring
- (13) Technopolymer spring ring
- (4) NBR gasket



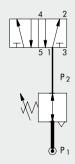


(D)

How to assembly RML:

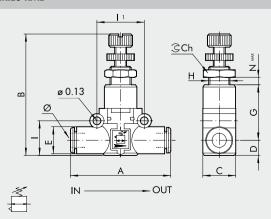
- Fig. (a) Adding a RU6 fitting, with his male NPT thread, it is possible to mount the RML straight on to the actuator or the control valve.
- Fig. ® By using the ring nut screwed on the threaded body it's possible the assembling on panels.
- Fig. © On the plastic body there are two strong ring for the direct wall assembly.
- Fig. D Fixing on plate trought the proper small square SQU L.

POSSIBLE APPLICATIONS


If in a cylinder you require a thrust in one direction only, e.g. piston rod extension, and a lower thrust and pressure is sufficient in the other direction, you can save a lot of energy by mounting an economizer valve.

Example

Cylinder Ø 80 mm, stroke 200 mm, 6 bar, 12 cycles/min, 16 hours a day, 230 days a year. Consumption: 144 NI/min => 3460 kWh/year => 880 litres of oil => 2428 kg of CO₂ => € 346/year.


If you install an economizer that reduces the pressure from 6 to 2 bar, you SAVE: € 115/year.

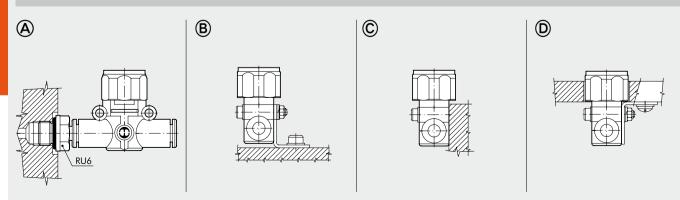
REMOTE REDUCER

P1 > P2

LINE-MOUNTED MINIATURE REDUCER, SERIES RML

Code	Ref.	Ø	Α	В	С	D	E	G	Н	I	11	Ch	Nmax
9061316U	RML 1/4-1/4	1/4	1.85	1.81-2.05	0.58	0.25	0.45	0.98	M9x0.75	0.57	0.79	0.43	0.18
9061324	RML 5/16-5/16	5/16	2.18	2.05-2.28	0.74	0.36	0.54	1.08	M11x1	0.74	0.94	0.51	0.15

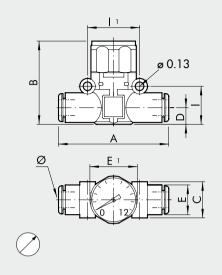
IN-LINE PRESSURE GAUGE SERIES MAN L


The MAN L pressure gauge belongs to the LINE ON LINE® family, which means it can be connected to all the other components in series or in parallel.

Available in the version for pipe-pipe connection with two push-in fittings. Though small in size, this pressure gauge, which is supplied in a metal casing, ensures accurate reading. It can be angled in any direction simply by rotating manually.

TECHNICAL DATA		Ø 5/32	Ø 1/4	Ø 5/16			
Operating pressure	MPa		1.2				
	bar		12				
	psi		174				
Temperature range	°C	- 20 to + 60					
	°F	- 4 to + 140					
Precision			± 4% full scale				
Recommended pipe		Rilsan PA11	- Nylon 6 - Polyamide 12 - Polyamide	olypropylene			
Fluid		Rilsan PA11 - Nylon 6 - Polyamide 12 - Polypropylene Lubricated or unlubricated filtered compressed air					

ASSEMBLY OPTIONS



How to mount the MAN L:

- Fig. (A) Adding a RU6 fitting, with his male NPT thread, it is possible to mount the MAL L straight on to the actuator or the control valve.
- Fig. ® Fixing to the plate with the special SQU L bracket.
- Fig. © There are two robust rings on the plastic body for fixing the MAN L straight onto the wall.
 Fig. © Use the SQL L bracket for panel mounting the MAN L.

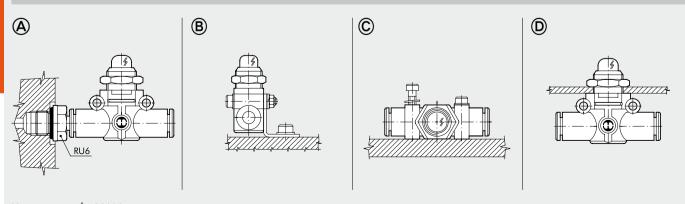
MAN L PIPE-PIPE

Code	Ref.	Ø	A	В	С	D	E	E1	I	11
9067001	MAN L 5/32-5/32	5/32	1.65	1.42	0.42	0.22	0.39	0.9	0.5	0.63
9067016U	MAN L 1/4-1/4	1/4	1.95	1.38	0.58	0.25	0.45	0.9	0.57	0.79
9067024	MAN L 5/16-5/16	5/16	2.26	1.61	0.74	0.36	0.54	0.9	0.74	0.94

NOTES

IN-LINE PRESSURE INDICATOR **SERIES LAM L**

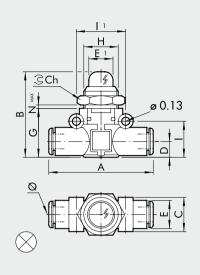
The LAM L pneumatic light indicator belongs to the LINE ON LINE® family, which means it can be connected to all the other components in series or in parallel.


Available in the version for pipe-pipe connection with two push-in fittings. When there is no pressure, the clear technopolymer bell looks empty. When there is pressure, a red signal appears.

The clear bell can be cleaned using normal detergents or ethyl alcohol, as the technopolymer used is fully compatible.

TECHNICAL DATA		Ø 1/4	Ø 5/16					
Operating pressure	MPa	0.2	- 1					
	bar	2 -						
	psi	29 -						
Temperature range	°C							
	°F	- 4 to						
Flow rate at 6.3 bar (0.63 MPa - 91 psi) ΔP 1 bar (0.1 Mpa - 14.5 psi)	NI/min	420	800					
	scfm	14.8	28.3					
Colour with pressure		Orange - Green						
Recommended pipe		Rilsan PA11 - Nylon 6 - Polyamide 12 - Polypropylene						
Fluid		Lubricated or unlubricated filtered comp	oressed air; if used, must be continuous					

ASSEMBLY OPTIONS


How to mount the LAM L:

- Fig. (A) Adding a RU6 fitting, with his male NPT thread, it is possible to mount the LAM L straight on to the actuator or the control valve.

- Fig. ® Fixing to the plate with the special SQU L bracket.
 Fig. © There are two robust rings on the plastic body for fixing the LAM L straight onto the wall.
 Fig. ® The ring nut is screwed onto the threaded metal part of the LAM L body for panel mounting.

LAM L PIPE-PIPE

Code	Ref.	Ø	Α	В	С	D	E	El	G	Н	I	11	Ch	Nmax
9068016U	LAM L 1/4-1/4-A	1/4	1.95	1.46	0.58	0.25	0.45	0.42	0.83	M15x1	0.57	0.79	0.67	0.18
9068216U	LAM L 1/4-1/4-V													

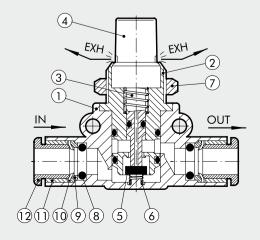
9068024 LAM L 5/16-5/16-A 5/16 2.26 1.61 0.74 0.36 0.54 0.42 1.02 M15x1 0.74 0.94 0.67 0.18 9068224 LAM L 5/16-5/16-V

A = Orange V = Green

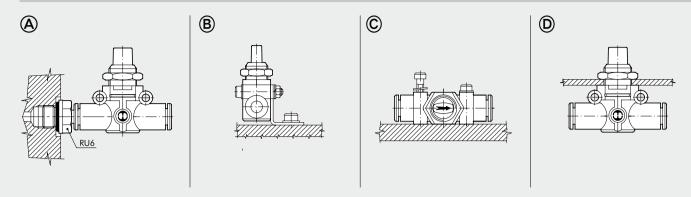
NOTES

IN-LINE SHUTOFF VALVE SERIES V2V L AND V3V L

V2V L and V3V L shutoff valves belong to the LINE ON LINE® family which means they can be connected to all the other components in series or in parallel.

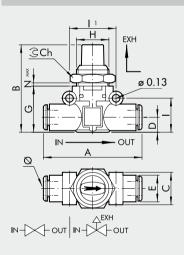

Available in the version for pipe-pipe connection with two push-in fittings. V2V is a two-way unidirectional valve, while V3V is a three-way valve with free discharge in the area around the control knob.

The locked version is probably the smallest available on the market. A lock is provided to ensure the valve is kept in the closed position during machine maintenance. The valve is supplied complete with a lock and two keys.



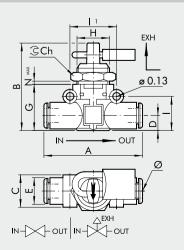
TECHNICAL DATA		Ø 1/4	Ø 5/16				
Operating pressure	MPa	1					
	bar	10	0				
	psi	14					
Temperature range	°C	- 20 to	o + 60				
	°F	- 4 to	+ 140				
Flow rate at 6.3 bar (0.63 MPa - 91 psi) ΔP 1 bar (0.1 MPa - 14.5 psi)	NI/min	280	470				
	scfm	10	16.6				
Flow rate on exhaust at 6.3 bar (0.63 MPa - 91 psi)	NI/min	110	110				
	scfm	3.8	3.8				
Recommended pipe		Rilsan PA11 - Nylon 6 - Polyamide 12 - Polypropylene					
Fluid		Lubricated or unlubricated filtered compressed air; if used, must be continuous					

- 1 Technopolymer body
- ② Nickel-plated brass insert
- 3 Brass rod
- 4 Technopolymer knob
- S NBR valve
- 6 Stainless steel valve compression spring
- 7 Nickel-plated brass wall-mount ring nut
- 8 NBR gasket
- Technopolymer spring ring
- 10 Stainless steel folding spring
- 1 Technopolymer locking bushing
- Technopolymer release bushing



How to mount the V2V/V3V L:

- Fig. (a) Adding a RU6 fitting, with his male NPT thread, it is possible to mount the V2V/V3V L straight on to the actuator or the control valve.


- Fig. (B) Fixing to the plate with the special SQU L bracket.
 Fig. (C) There are two robust rings on the plastic body for fixing the V2V/V3V L straight onto the wall.
 Fig. (D) The rig nut is screwed onto the threaded metal part of the V2V/V3V L body for panel mounting.

V2V/V3V L PIPE-PIPE

Code	Ref.	Ø	Α	В	C	D	E	G	Н	I	11	Ch	Nmax
9065016U	V2V L 1/4-1/4	1/4	1.95	1.61	0.58	0.25	0.45	0.83	M15x1	0.57	0.79	0.67	0.22
9066016U	V3V L 1/4-1/4												
9065024	V2V L 5/16-5/16	5/16	2.26	1.81	0.74	0.36	0.54	1.02	M15x1	0.74	0.94	0.67	0.22
9066024	V3V L 5/16-5/16												

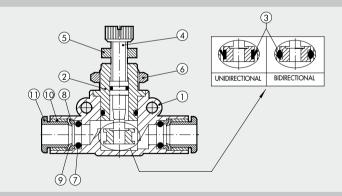
V2V/V3V L PIPE-PIPE PADLOCKED

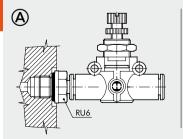
Code	Ref.	Ø	Α	В	C	D	E	G	Н	I	11	Ch	Nmax
9065116U	V2V L 1/4-1/4 KEY	1/4	1.95	1.61	0.58	0.25	0.45	0.83	M15x1	0.57	0.79	0.67	0.22
9066116U	V3V L 1/4-1/4 KEY												
9065124	V2V L 5/16-5/16 KEY	5/16	2.26	1.81	0.74	0.36	0.54	1.02	M15x1	0.74	0.94	0.67	0.22
9066124	V3V L 5/16-5/16 KEY												

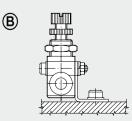
IN-LINE FLOW MICRO-REGULATOR SERIE RFL L

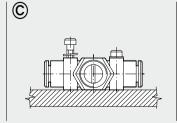
The RLF L flow micro-regulator belongs to the LINE ON LINE® family and can be connected in series or in parallel with all the other products. The RFL L regulates the air input and thus the speed in pneumatic actuators. Two versions are available:

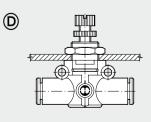
- Type U (unidirectional) regulates the flow only in one of the two directions of air flow. The following types of fitting can be mounted:
 - Push-in input and output fitting
- Type B (bidirectional) regulates the flow in both directions of air flow. The following types of fitting can be mounted:
 - Push-in input and output fitting
 - Threaded port and push-in fitting


There are four possible types of assembly (see example on the following page).

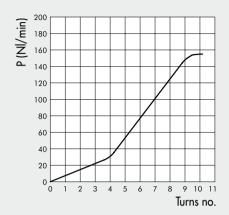

TECHNICAL DATA		Ø 5/32	Ø 1/4	Ø 5/16			
Max. operating pressure	MPa		1				
	bar		10				
	psi		145				
Temperature range	°C		-20 to +60				
	°F		-4 to + 140				
Max flow rate on regulation at 6.3 bar (0.63 MPa - 91 psi)	NI/min	155	450	850			
	scfm	5.5	16	30			
Flow rate on exhaust at 6.3 bar (0.63 MPa - 91 psi)	NI/min	160	550	950			
	scfm	5.6	19.5	33.6			
Adjustment		i	Manual or using a screwdrive				
Internal system			Tapered needle				
Recommended pipe			- Nylon 6 - Polyamide 12 - Po				
Fluid		Lubricated or unlubricated filtered air					
Compatibility with oils		Please refer to page 5-4 of the tecnical documentation					


COMPONENTS

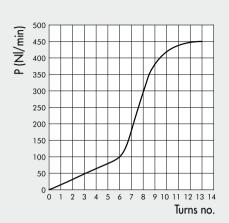

- 1 Technopolymer body
- Nickel-plated brass seal support
- 3 NBR gasket
- Brass adjusting needle
- S Nickel-plated brass needle ring nut
- 6 Wall fixing ring nut
- (7) NBR seal
- (8) Technopolymer spring ring
- Stainless steel clip-on spring
- 10 Technopolymer stop bushing
- 11) Technopolymer release bushing



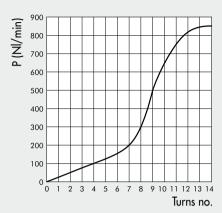
ASSEMBLY OPTIONS

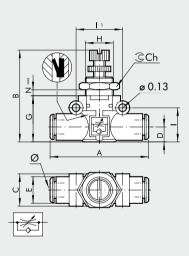

How to mount the RFL L:

- Fig. (a) Adding a RU6 fitting, with his male NPT thread, it is possible to mount the RFL L straight on to the actuator or the control valve.
- Fig. B Fixing to the plate with the special SQU L bracket.
- Fig. © There are two robust rings on the plastic body for fixing the RFL L straight onto the wall.
- Fig. D The ring nut is screwed onto the threaded metal part of the RFL L body for panel mounting.

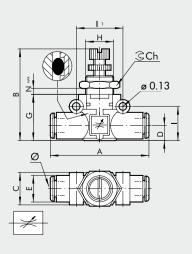


FLOW RATE CHARTS AT 6.3 bar (0.63 MPa - 91 psi) DEPENDING ON THE TURNS EFFECTED BY THE REGULATION SCREW


RFL L Ø 5/32


RFL LØ 1/4

RFL L Ø 5/16



RFL L PIPE-PIPE UNIDIRECTIONAL

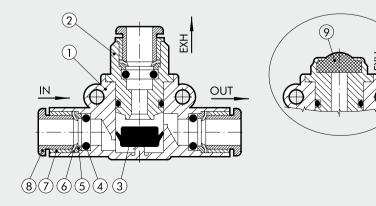
Code	Ref.	Ø	Α	В	C	D	E	G	Н	1	11	Ch	Nmax
9041301	RFL L U 5/32-5/32	5/32	1.65	1.40-1.51	0.42	0.22	0.39	0.69	M9x0.75	0.5	0.63	0.43	0.16
9041316U	RFL L U 1/4-1/4	1/4	1.95	1.42-1.61	0.58	0.25	0.45	0.79	M12x0.75	0.57	0.79	0.59	0.16
90/132/	PFI I II 5/16-5/16	5/16	2 26	1 73-1 93	0.74	0.36	0.54	1.02	M15v1	0.74	0.94	0.79	0.18

RFL L PIPE-PIPE BIDIRECTIONAL

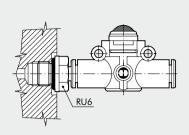
Code	Ref.	Ø	Α	В	С	D	E	G	Н	I	11	Ch	Nmax
9041601	RFL L B 5/32-5/32	5/32	1.65	1.40-1.51	0.42	0.22	0.39	0.69	M9x0.75	0.5	0.63	0.43	0.16
9041616U	RFL L B 1/4-1/4	1/4	1.95	1.42-1.61	0.58	0.25	0.45	0.79	M12x0.75	0.57	0.79	0.59	0.16
9041624	RFI I B 5/16-5/16	5/16	2 26	1 73-1 93	0.74	0.36	0.54	1.02	M15v1	0.74	0.94	0.79	0.18

IN-LINE QUICK-EXHAUST VALVES SERIES VSR L

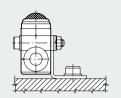
The VSR L quick-exhaust valve belongs to the LINE ON LINE® family, which means it can be connected to all the other components in series or in parallel. Available in the version for pipe-pipe connection with two push-in fittings.

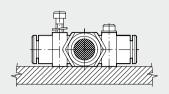

Exhaust can be silenced using a STAINLESS steel wire silencer, or conveyed using a push-in fitting.

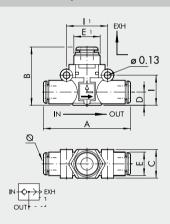
TECHNICAL DATA		Ø 5/32	Ø 1/4	Ø 5/16
Inlet pressure	MPa		0.1 - 1	
	bar		1 - 10	
	psi		14.5 - 145	
Temperature range	°C		-20 to $+60$	
	°F		-4 to $+140$	
Inlet flow rate at 6.3 bar (0.63 MPa - 91 psi) ΔP 1 bar (0.1 MPa - 14.5 psi)	NI/min	50	270	400
	scfm	1.8	9.5	14
Exhaust flow rate at 6.3 bar (0.63 MPa - 91 psi)	NI/min	100	700	1000
	scfm	3.5	24.7	35.3
Recommended pipe			- Nylon 6 - Polyamide 12 - P	
Fluid		Lubricated or unlubricat	ed filtered compressed air; if u	used, must be continuous
Compatibility with oils		Please refer	to page 5-4 of the tecnical do	cumentation


- Technopolymer body
 Nickel-plated brass insert
- 3 NBR valve
- 4 NBR gasket

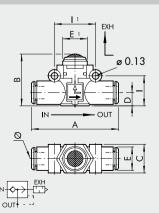
- (a) Tabk gasker
 (b) Technopolymer spring ring
 (c) Stainless steel folding spring
 (d) Brass or technopolymer locking bushing
 (e) Technopolymer release bushing
- Stainless steel wire silencer







How to mount the VSR L:

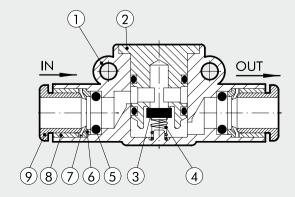

- Fig. (a) Adding a RU6 fitting, with his male NPT thread, it is possible to mount the VSR L straight on to the actuator or the control valve.
- Fig. (B) Fixing to the plate with the special SQU L bracket.
 Fig. (C) There are two robust rings on the plastic body for fixing the VSR L straight onto the wall.

VSR L PIPE-PIPE, CONVEYED EXHAUST

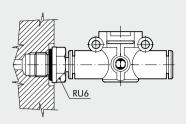
Code	Ref.	Ø	Α	В	С	D	E	E1	I	11
9063001	VSR L 5/32-5/32-5/32	5/32	1.65	1.02	0.42	0.22	0.39	0.38	0.5	0.63
9063016U	VSR L 1/4-1/4-1/4	1/4	1.95	1.18	0.58	0.25	0.45	0.51	0.57	0.79
9063024	VSR L 5/16-5/16-5/16	5/16	2.26	1.41	0.74	0.36	0.54	0.59	0.74	0.94

VSR L PIPE-PIPE, SILENCED EXHAUST

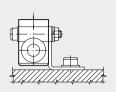
Code	Ref.	Ø	Α	В	С	D	E	E1	I	11
9063101	VSR L 5/32-5/32-SIL	5/32	1.65	0.78	0.42	0.22	0.39	0.39	0.5	0.63
9063116U	VSR L 1/4-1/4-SIL	1/4	1.95	1	0.58	0.25	0.45	0.51	0.57	0.79
9063124	VSR L 5/16-5/16-SIL	5/16	2.26	1.24	0.74	0.36	0.54	0.71	0.74	0.94

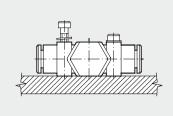

IN-LINE CHECK VALVE SERIES VNR L

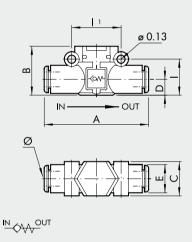
The VNR L check valve belongs to the LINE ON LINE® family, which means it can be connected to all the other components in series or in parallel. Available in the version for pipe-pipe connection with two push-in fittings. It is still the only check valve with holes for wall mounting.


TECHNICAL DATA		Ø 5/32	Ø 1/4	Ø 5/16
Operating pressure	MPa		0.05 - 1.2	
	bar		0.5 - 12	
	psi		7.2 - 174	
Temperature range	°C		-20 to $+60$	
	°F		-4 to +140	
Flow rate at 6.3 bar (0.63 MPa - 91 psi) ΔP 1 bar (0.1 MPa - 14.5 psi)	Nl/min	80	320	480
	scfm	2.8	11.3	17
Recommended pipe		Rilsan PA11	- Nylon 6 - Polyamide 12 - Po	olypropylene
Fluid		Lubricated	d or unlubricated filtered comp	oressed air

- Technopolymer body
 Nickel-plated brass insert
- 3 NBR valve
- 4 Stainless steel valve compression spring
- ⑤ NBR gasket
- Technopolymer spring ringStainless steel folding spring
- Technopolymer locking bushing
- Technopolymer release bushing



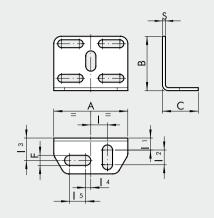




How to mount the VNR L:

- Fig. (a) Adding a RU6 fitting, with his male NPT thread, it is possible to mount the VNR L straight on to the actuator or the control valve.
- Fig. ® Fixing to the plate with the special SQU L bracket.
 Fig. © There are two robust rings on the plastic body for fixing the VNR L straight onto the wall.

VNR L PIPE-PIPE

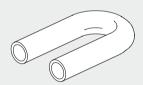


Code	Ref.	Ø	Α	В	С	D	E	I	11
9064001	VNR L 5/32-5/32	5/32	1.65	0.69	0.42	5.6	0.39	0.5	0.63
9064016U	VNR L 1/4-1/4	1/4	1.95	0.79	0.58	0.25	0.45	0.57	0.79
9064024	VNR L 5/16-5/16	5/16	2.26	1	0.74	0.36	0.54	0.73	0.94

NOTES

lineonline accessories

FIXING SQUARE KIT

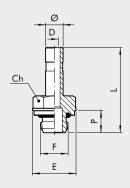


 Code
 Description
 A
 B
 C
 F
 I
 I1
 I2
 I3
 I4
 I5
 S

 9062110
 SQU L
 1.18
 0.87
 0.57
 0.16
 0.27
 0.19
 0.23
 0.36
 0.08
 0.25
 0.05

NOTE: comes with two M3x16 screws (for L.O.L. Ø 1/4 - 5/16), two M3 hexagonal nuts, 2 groovers, 4 washers.

U-BOLT



 Code
 Description

 9062216U
 TUB L 1/4-1/4

 9062224
 TUB L 5/16-5/16

RU6 - STEM ADAPTORS

				C	<u>h</u>				
Code	Ref	Ø	F	Inc	mm	P	L	D	E
2U06001	RU6	5/32	10/32 UNF	5/16	8	0.16	0.99	0.08	0.35
2U06002	RU6	5/32	1/8 NPT	0.472	12	0.24	1.09	0.10	0.51
2U06003	RU6	5/32	1/4 NPT	0.551	14	0.31	1.19	0.10	0.65
2U06000	RU6	1/4	10/32 UNF	5/16	8	0.16	1.01	0.08	0.35
2U06007	RU6	1/4	1/8 NPT	0.472	12	0.24	1.11	0.16	0.51
2U06008	RU6	1/4	1/4 NPT	0.551	14	0.31	1.20	0.16	0.65
2U06020	RU6	1/4	3/8 NPT	0.669	17	0.35	1.31	0.16	0.79
2U06009	RU6	5/16	1/8 NPT	0.472	12	0.24	1.15	0.22	0.51
2U06010	RU6	5/16	1/4 NPT	0.551	14	0.31	1.24	0.24	0.65
2006011	RU6	5/16	3/8 NPT	0.669	17	0.35	1.35	0.24	0.79